On the Exponential Decay for Compressible Navier–Stokes–Korteweg Equations with a Drag Term

نویسندگان

چکیده

In this paper, we consider global weak solutions to compressible Navier–Stokes–Korteweg equations with density dependent viscosities, in a periodic domain $$\Omega = \mathbb T^3$$ , linear drag term respect the velocity. The main result concerns exponential decay equilibrium of such using log-sobolev type inequalities. order show result, starting point is weak-entropy definition, introduced D. Bresch, A. Vasseur and C. Yu (Global existence entropy-weak Navier–Stokes non-linear viscosities. arXiv:1905.02701 2019). Assuming extra assumptions on shear viscosity when close vacuum tends infinity, conclude equilibrium. Note that our covers quantum system term.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential decay for Maxwell equations with a boundary memory condition

We study the asymptotic behavior of the solution of the Maxwell equations with the following boundary condition of memory type Eτ (t) = η0H(t)× n + ∫ ∞ 0 η(s)H(t− s)× n ds. We consider a ‘Graffi’ type free energy and we prove that, if the kernel η satisfies the condition η′′ + κ η′ > 0 and the domain Ω is strongly star shaped, then the energy of the solution exponentially decays. We also prove ...

متن کامل

Drag reduction by compressible bubbles.

Drag reduction by bubbles in stationary turbulent flows is sensitive to the compressibility of the bubbles. Without this dynamical effect the bubbles only renormalize the fluid density and viscosity, an effect that by itself can only lead to a small percentage of drag reduction. We show in this paper that the dynamics of bubbles and their effect on the compressibility of the mixture can lead to...

متن کامل

Domination with exponential decay

Let G be a graph and S ⊆ V (G). For each vertex u ∈ S and for each v ∈ V (G) − S, we define d(u, v) = d(v, u) to be the length of a shortest path in 〈V (G)−(S−{u})〉 if such a path exists, and∞ otherwise. Let v ∈ V (G). We define wS(v) = ∑ u∈S 1 2d(u,v)−1 if v 6∈ S, and wS(v) = 2 if v ∈ S. If, for each v ∈ V (G), we have wS(v) ≥ 1, then S is an exponential dominating set. The smallest cardinalit...

متن کامل

Exponential decay for the Schrödinger equation on a dissipative waveguide

We prove exponential decay for the solution of the Schrödinger equation on a dissipative waveguide. The absorption is effective everywhere on the boundary but the geometric control condition is not satisfied. The proof relies on separation of variables and the Riesz basis property for the eigenfunctions of the transverse operator. The case where the absorption index takes negative values is als...

متن کامل

Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping

In this paper we obtain an exponential rate of decay for the solution of the viscoelastic nonlinear wave equation utt −∆u+ f(x, t, u) + ∫ t 0 g(t− τ)∆u(τ) dτ + a(x)ut = 0 in Ω× (0,∞). Here the damping term a(x)ut may be null for some part of the domain Ω. By assuming that the kernel g in the memory term decays exponentially, the damping effect allows us to avoid compactness arguments and and to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Fluid Mechanics

سال: 2021

ISSN: ['1422-6952', '1422-6928']

DOI: https://doi.org/10.1007/s00021-021-00639-2